Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5652, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453958

RESUMO

The ability to endure extreme corrosion in challenging environments is reduced in stainless steel. This can be addressed by appropriate surface modification techniques to redefine the surface with the required properties. The characteristics of the atmospheric plasma sprayed AlCoCrFeNi High Entropy Alloy (HEA) on SS316l are presented in this study. The coating characterisation revealed uniform coating with homogeneous deposition of gas-atomized AlCoCrFeNi HEA spanning for 150 µm. The coated substrates were further annealed for 2 h at 400 °C, 550 °C, 700 °C and 850 °C and the annealing at 550 °C offered enhanced microstructure. Annealing the coated sample at 550 °C offered a 46% improvement in microhardness against the uncoated sample post-annealing. The electrochemical corrosion tests showcased improved corrosion resistance after annealing through the formation of a protective oxide layer and the influence of HEA. Hot corrosion tests at 900 °C resulted in 10.1%, 8.49%, and 10.36% improved corrosion resistance for the coated sample annealed at 550 °C than the coated sample pre annealing and 44.09%, 44.25%, and 42.09% than the uncoated sample pre annealing under three salt mixtures respectively. The microstructural analysis examines various corrosion modes and verifies the presence and formation of protective oxide layers.

2.
Sci Rep ; 14(1): 3662, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351375

RESUMO

Surface modification by suitable technique aids in improving the characteristics of material to resist severe wear in demanding environments and challenging applications. The present study aims to analyse the tribological performance of Stainless Steel (SS304) reinforced with CoCrCuFeTi High Entropy Alloy (HEA) through friction stir processing and compares the results with annealed specimens. The CoCrCuFeTi HEA was ball milled and revealed irregular fragment particles with Body Centred Cubic (BCC) phase. The processed samples exhibited excellent refinement in grains with uniform HEA reinforcement distribution. The grains were observed to be in nano level post-annealing promoting exceptional microhardness. The pin-on-disc wear test was conducted by varying load (10-40N), sliding velocity (0.5-3.5 m/s) and sliding distance (500-2000 m) and the respective worn surface was analysed. The processed sample with HEA after annealing offered 29.8%, 57.4% and 58.49% improved wear resistance at the minimum level of load, sliding velocity and sliding distance than the processed base samples. The worn morphology revealed delamination, abrasion, adhesion and oxide layer formation to be the predominant wear mechanisms.

3.
Heliyon ; 9(10): e20523, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37790958

RESUMO

The need for food size reduction before consumption has led to the use of motorized grinding machine which operates on energized rubbing of two grooved cast-iron discs, and this unintentionally results in tribological degradation and corrosion of grinding discs into the ground food. The objective of this study was to carry out an assessment of corrosion susceptibility of grinding discs from different manufacturing methods in simulated gastro-intestinal environment. Six grinding discs from three states in Nigeria were selected for this study, based on manufacturing methods namely: rotary, cupola, and pit furnaces. Experimental techniques used for the study included: X-Ray Fluorescence spectroscope for determination of chemical composition and X-Ray Diffractometer was used for phase identification. Corrosion susceptibility of grinding discs on interaction with pseudo-body fluid was studied using potentiodynamic polarization scan and product analysis (gasometric) methods in simulated gastro-intestinal environment, typical of human stomach, as electrolyte. The electrolyte contained 2 g/L NaCl acidified to pH of 1.7 with HCl and regulated at 37 °C. Optical microscopy of the electrochemical samples was done for corrosion damage assessment. The key finding from the study was that all the grinding discs contain iron and silicon as dominant alloy elements, which existed predominantly as iron carbide and ferrosilicon phases. Corrosion of the discs in simulated gastric solution was well profound irrespective of the manufacturing method, though, with varying degree among the discs. The outcome of this study is applicable to food industries where cognitive measures may have to be taken on materials selection to minimise the risk of food contamination from materials corrosion.

4.
Heliyon ; 9(8): e18474, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576194

RESUMO

Recent studies are evaluating the use of particulates fabricated from agro-based residues as reinforcement for enhancing the properties of aluminium alloys. This report focuses on the optimization approach and modeling of responses for future prediction, which are absent from the majority of studies involving particle reinforcement of an aluminum matrix. Herein, palm kernel shell ash (PKA) and rice husk ash (RHA) were incorporated with 4 wt% of WSD and used as fillers in the Aluminium-6061 matrix at variable proportions. The response surface approach was utilized in the experiment design, modeling, and outcome optimization. The independent variables are the proportions of PKA and RHA and stir casting temperature. Yield, ultimate tensile, impact strength, elastic modulus, and fracture toughness are examined as response parameters. The results demonstrated that the microstructural property played a significant role in the responses. Incorporating PKA and RHA into the Al-6061 matrix improved the response parameters. Temperatures in the range of 700 and 800 °C enhanced the property parameters, even though temperatures within 800 and 900 °C caused a decline in response. The dependence of the responses on the pattern between property variables was revealed by surface and contour plots. The development of models for predicting responses. Optimal conditions were reached at 4.03% PKA, 5.12% RHA, and 787 °C, with an error <5% when compared to the forecast responses, thus validating the model.

5.
Environ Sci Pollut Res Int ; 28(21): 26269-26279, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33797043

RESUMO

The concept of this paper was to explore the comparative advantage of polymer composite in the formation of a critical part of electrodes, separators, and electrolytes. These parts largely determine the overall performance of new evolving supercapacitors (SC) as against many other existing storage devices. Polymer materials are reputed for their low weight and life-cycle flexibility which makes supercapacitors unique in their functions. In this paper, application and classification of SCs were undertaken to take into consideration the peculiarities of polymer composite suitable for each class of SCs identified in this work. Part of the rationale of this review paper was to bridge the existing gap identified in many storage devices using salient properties inherent in light-weight materials. This paper also discussed the potential threats to SCs, which require further research works. It is expected that this paper would assist other researchers in evolving SCs devoid of low cell voltages, lower energy density, and reduction of production cost.


Assuntos
Carbono , Polímeros , Capacitância Elétrica , Eletrodos , Eletrólitos
6.
Heliyon ; 5(10): e02552, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31687481

RESUMO

In this research, hydroxyapatite (HAp) was synthesized from chicken eggshell waste by hydrothermal method for the development of bio-composite material suitable for biomedical implant. However, since environmental influences on natural materials are unique for different geographical locations in the world, the use of agro wastes from these locations need to be investigated. This work provides the detail results of the potentials of eggshell as HAp source. High-density polyethylene (HDPE)/HAp composites were developed by random dispersion of Hap (10, 20, 30 and 40 wt.%) in HDPE matrix, and were designated as HAC10, HAC20, HAC30, and HAC40. The HAp-filled HDPE composites were developed by a hot compression moulding process. The samples were subjected to tensile, flexural, impact, fracture toughness and wear tests according to ASTM standards in order to establish their structural performance as an implant material. Furthermore, the samples were also tested for hydrophilicity using tap water and simulated body fluid (SBF). X-ray diffraction analysis showed strong peaks of hydroxyapatite phase which established that the influence of the selected processing conditions on the poultry eggshell as a natural source for the biomedical application was suitable for the synthesis of high-quality hydroxyapatite. The mechanical properties of the developed composites were enhanced to the level of the required properties expected of an implant material compared to the control sample except for impact strength. Water absorption characteristics of the developed composite samples also displayed expected behaviour in SBF solution than in tap water thereby promoting the material as a good implant material. From the results, the sample with 40 wt.% HAp possess the highest values in the mechanical properties examined while sample from 20 wt.% had the best fracture toughness. The results revealed that these waste eggshells could be successfully converted into useful biocompatible HAp particles needed for the enhancement of the mechanical properties of polymer composites to meet the structural challenges of bio-composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...